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Solvable Ising model on Sierpinski carpets: The partition function
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With a special Sierpinski carpet (SC), the Ising model is exactly solved by a combinatorial approach
and graph technique. The rigorous partition function and free energy are obtained and the phase transi-
tion is investigated. We argue that the existence of a phase transition strongly depends on the order of
ramification of the SC. Our method is extended to deal with other lattices.

PACS number(s): 05.50.+q, 75.10.Hk

I. INTRODUCTION

Statistical models, such as the Ising model and the
Potts model, play an important role in the study of phase
transitions and critical phenomena. A key step in solving
phase transitions is to calculate the partition function ex-
actly. As we know, finding the rigorous partition func-
tion of a statistical model has been a very difficult task;
only a few samples, such as the one-dimensional Ising
model in the existence of external field and the two-
dimensional Ising model without external field (Onsager
solution) have been solved exactly so far; meanwhile all
efforts concentrate on transitionally invariant lattices.

In the 1980s an object with dilation symmetry, the
fractal, has attracted much attention; a good deal of
research associated with fractals has been done. In this
paper we will only focus on phase transitions and critical
phenomena of the Ising model.

Gefen and co-workers [1-3] have written some
pioneering works in which they investigated the phase
transitions of the Ising and Potts models on Koch curves,
Sierpinski gaskets, and Sierpinski carpets (SC’s) by means
of decimation and Migdal-Kadanoff renormalization-
group techniques. They pointed out that the Ising model
can be solved exactly on any fractal whose order of
ramification is finite, using exact renormalization-group
methods. They also led to the following conclusions:
there is no phase transition if the order of ramification R
equals a finite number and there is a finite-temperature
transition if R is infinity. Since then, a lot of work related
to the same object has been done [4]; however, an explicit
calculation of the partition function and the free energy
for the Ising model is still lacking.

In this paper we construct a SC which can simulate
some real random fractals, and use the graph method and
the combinatorial approach to calculate explicitly the
partition function and the free energy. In the following
we will describe the method in detail and give some use-
ful discussions and extensions.

II. PARTITION FUNCTION:
METHOD OF CALCULATION

First of all we construct a special kind of SC. Let us
start with a two-dimensional square and a three-
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dimensional cube and divide them into 9 equal
subsquares and 27 subcubes, respectively; then remove 4
subsquares and 18 subcubes from them as shown in Figs.
1 and 2; repeating the process, we finally acquire the SC
embedded in two- and three-dimensional Euclidean
spaces. The first stage (n =1) of construction is called
the generator of SC’s. Following the definition, the frac-
tal dimensions of SC’s are d,=—In5/In2=1.465 and
d;=In9/In3=2, respectively. The order of ramification
of SC’s given here has a finite number other than infinity;
because of this it is possible to calculate exactly the parti-
tion function.
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FIG. 1. The process of construction of a Sierpinski carpet
embedded in two-dimensional Euclidean space. The shadow
parts are removed. The n =1 stage of construction is the gen-
erator. The fractal dimension d,=1.465.

2457 ©1994 The American Physical Society



2458 BRIEF REPORTS 49

.......................

...............

FIG. 2. Similar to Fig. 1. The fractal dimension d,=2.

We now put the Ising spin on each site of the SC and
suppose the existence of an interaction between nearest-
neighbor (NN) spins. The reduced model Hamiltonian
can be written as

—BH=K Y 0,0;, (1
NN

where the Ising spin o;,==*1, K=pJ=J/kT is the re-
duced coupling parameter, and the summation is over all

J

nearest-neighbor spin pairs. To study phase transitions
we calculate the partition function

Z=2e_BH, (2)
fol

where {0} denotes all possible spin configurations of the
system. In the nth stage of construction of the SC, the
partition function can be written as

Z,=3 expK ¥ 0,0,)=3 HeKU‘af=2 I1 (coshK)(1+0,0; tanhK)
NN {o}] NN

fo} {0} NN

=(coshK)M2 I[1(1+o0,0,tanhk), (3)
fo} NN

where M is the number of edges of the SC.

For convenience of calculation, we first consider the structure of Fig. 1. We expand the product of expression (3):

S II(1+o0,0;tanhK)=73
(o} NN {o}

+-t+3(00;) (o, 0
NN

P p)

1+3 0,0;tanhK + 3 (0, 0, N0, 0; Jtanh’K
NN ot

j )(tanhK )M | . (4)
M

It is not difficult to see that the nonzero contributions to (4) only come from those terms in which the related lattice
sites form a number of closed nonbranching graphs; for example, the following graph corresponds to the term
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S [(010)(0,03)(0304)(040,)]
{0}

X[(017018)(0 130 19)(019030)(0 390 17)]
X tanh®K =2"" tanh®K , (5)

where N, is the total number of the sites of the fractal lattice. We can find that the basic unit of the closed nonbranch-
ing graphs is a subsquare, in which each site has an even number of in and out bonds. In graph theory they are called
even graphs (Mayer diagrams) [5]. Therefore the result of expression (4) will be composed of all possible combinations
of m subsquares; in consequence, we can write the partition function as follows:

]
Z,=(coshK 2" {1+m tanh'K + =" —tanh®K + - - - +

m! a1
—m tanh*1K + - - -
2W(m —2) pran

1(m —1)
=(coshK M2""(1+tanh*K )™ , (6)

where m is the total number of subsquares in the nth stage of construction of the SC and M =4m.

Next we investigate the SC embedded in three-dimensional space (Fig. 2). The nonzero contributions to (4) become
much more complicated in the underlying system. With the same argument as above, we can display the lower-order
nonzero contribution graphs embedded in the subcube as follows:

1 X
_—— tanh*K ,
4 4
! 2 -
4 | 3 1 4 2]
I -
: ! | — —_— tanh®K , (7)
F - —,
7
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a Y. N
> — tanh®K ,
5 53 o
& 3 7 6
8 7
[
where a factor (tanhK) is assigned on each bond. It is E(K)=6tanh*K +8tanh®K +11 tanh®K , 9

clear that the total number of even graphs with factors ) N .
(tanhK)*, (tanhK)%, and (tanhK)® in a subcube will be 6, 8, which represents the nonzero contributions of all possible

and 11, respectively. As a result, we obtain the rigorous even graphs in a subcube.
partition function

II1. FREE ENERGY

= Mo m! 2
Z,=(coshK}"2 " \1+mE(k)+ 2Wm —2) EXK) We now turn on the exact expression of the free energy
per site in the thermodynamic limit; it will be for the
\ structure of Fig. 1:
m! -
44— pYyg)+ -} . kT
m -1 = &) /= lim —y—InZ,
® = tim —XL[M In(coshK )+ N, In2

n— oo n

In the present case, M =12m and the function E (k) is +m In(1+tanh*K)], (10)
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FIG. 3. A generator of a Sierpinski carpet (n =1).

where N, =3X5"+1, m=5", and M =4X35". Finally we
get

/= —kT[4In(coshK)+In2+1In(1+tanh*K)] . (11

Since tanhK <1 and coshK is a finite value when T+0,
the free energy will be an analytical function of
K=J/kT, which implies that there is no finite-
temperature transition, i.e., critical temperature 7. =0.
Similarly for Fig. 2, we have the free energy per site as
follows:

/=1im —Linz,
_ ... —kT
= lim [M In(coshK )+ N,In2+m InE(K)]
H— o0 n
= —kT[2In(coshK)+In2+; InE (K)] (12)

which is also an analytical function of K and thus no
phase transition exists.

As we expect, the zero-temperature transition occurs
due to the fact that the Sierpinski carpets mentioned here
have a finite order of ramification R [3]. The result can
be understood with the standard inequalities or entropy
arguments (see, e.g., [6] and [7]). At any finite tempera-
ture, the system may break into domains, gaining free en-
ergy, and as a result order is destroyed [3].

IV. EXTENSION AND DISCUSSION

The combinatorial approach and graph technique can
also be applied to those lattices (they may not be fractal
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FIG. 4. Bethe-type lattice. n denotes the different genera-
tions.

lattices) in which the subunits connect with each other
only through a common site. Figures 3 and 4 show such
lattices. Figure 4 is a Bethe-type lattice but not fractal;
its exact partition function can be expressed as follows:

Z, =(coshK 2" (1+tanh*K )™ . (13)
The free energy per site in the thermodynamic limit is
_ .. —kT
P4 nll_{r; N, InZ,
= —kT[iIn(coshK)+In2+LIn(1+tanh’K)] . (14)

In expression (13) a notable feature appears, i.e., the fac-
tor (tanhK)’ replaces (tanhK)* in formula (6), which
reflects the different geometric property of a lattice struc-
ture. In addition, the second-order derivative of the free
energy is continuous for all temperatures, which shows
that the Ising model on the Bethe-type lattice does not
occur at a finite-temperature phase transition. However,
we have noted that the transition will be displayed in the
field dependence of the free energy and will become arbi-
trarily weak [8].

In our model we have never considered the existence of
an external field. In fact, if the applied field enters the
model Hamiltonian, we will not be able to obtain the
rigorous partition function.
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